Chemistry of O-Silylated Ketene Acetals: An Efficient Synthesis of Carbapenem and 1β-Methylcarbapenem Intermediates

Yasuyuki Kita,* Norio Shibata, Takashi Tohjo and Naoki Yoshida
Faculty of Pharmaceutical Sciences, Osaka University 1-6, Yamada-oka, Suita, Osaka 565, Japan

Abstract

3-(1-tert-Butyldimethylsiloxyethyl)-4-phenylsulfinylazetidin-2-one reacted smoothly with various types of O-silylated ketene acetals and silylated enol ethers in the presence of a catalytic amount of zinc iodide to give the corresponding trans-4-substituted azetidin-2-ones in good yields. The latter compounds are key intermediates for the synthesis of carbapenems and 1β-methylcarbapenems.

Since the discovery of the highly active carbapenem $1\left[\mathrm{R}^{\prime}=\right.$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$, thienamycin] and 1β-methylcarbapenem 2, a variety of stereoselective syntheses of these compounds and their analogues have been reported. ${ }^{1}$ Among them, the most popular route to these antibiotics have relied on the aldol-type reaction of the (+)-4-acetoxyazetidin-2-one 3 with properly designed metal enolates. \dagger^{+2} Recently, we have reported a novel efficient synthesis of racemic ${ }^{3}$ and optically active 1^{4} from racemic and optically active trans-3-(1-tert-butyldimethylsiloxy-ethyl)-4-phenylsulfinylazetidin-2-ones 4 obtained using our silicon-induced Pummerer-type reaction. ${ }^{5,6}$ In this paper, we wish to report the generality of the reaction of 4 with various types of silyl ketene acetals $5 a-e^{7}$ and silyl enol ethers $5 f-h$ and an application of this method to a synthesis of a key useful intermediate ${ }^{8}$ for 2.

A typical experimental procedure is as follows for the reaction of 4 with O-tert-butyldimethylsilyl-O-methyl ketene acetal 5a. A solution of $4,5 \mathrm{a}$ and a catalytic amount of zinc iodide in dry acetonitrile was stirred at $0^{\circ} \mathrm{C}$ for 1 h followed by usual workup to give ($3 S, 4 R$)-3-[(1R)-1-tert-butyldimethylsiloxyethyl]-4-methoxycarbonylmethyl- N -tert-butyldimethylsilylazetidin-2one 6 a (entry 1, Table 1). Similarly, 4 reacted with various types of silyl ketene acetals $\mathbf{5 b} \mathbf{e}$ and silyl enol ethers $\mathbf{5 f}-\mathbf{h}$ in the presence of a catalytic amount of zinc iodide in acetonitrile at room temperature to give high yields of the corresponding C-4 substituted trans-azetidin-2-ones $\mathbf{6 b}$-h, stereoselectively (entries $2-8$, Table 1). The selective formation of trans-azetidin-2-ones $\mathbf{6 a - h}$ is reasonably explained by assuming the intermediacy of acyliminium salt \mathbf{A}. These azetidin-2-ones are useful intermediates for the synthesis of carbapenem antibiotics and their analogues. The reaction conditions and the ratios of α - and β isomers on $\mathrm{C}-1$ (carbapenem numbering) of the products are listed in Table 1.
Finally, our attention was focused on the synthesis of the 1β-methylcarbapenem 2. We examined the synthesis of the significant key intermediate 7^{8} for 2 by the reaction of 4 with two types of sulfur substituted silyl ketene acetals 8a, b followed
\dagger The azetidin-2-one 3 is available from Kanegafuchi Chemical Industry Co. Ltd., Osaka, Japan.

Scheme 1 Reagent and conditions: i, m-CPBA; ii, heat
by oxidative thermal elimination of sulfinic acid as exemplified in Scheme 1. The first approach using 8a gave the unexpected 4 -phenylthioazetidin-2-one 9 selectively (entry 9), the formation of which is explained by nucleophilic attack of the phenylthio anion generated by 1,4 -fragmentation reaction of $8 \mathbf{a}$ onto the acyliminium salt \mathbf{A}. On the other hand, the second approach using 8 b gave the expected 4 -substituted azetidin-2-one $\mathbf{1 0}$ in 95% yield (entry 10), which was readily converted to the desired exo-methylene compound 7 (68% yield) by m-chloroperbenzoic acid (m-CPBA) oxidation and subsequent thermal treatment in refluxing toluene for 1 h . The stereoselective hydrogenation of these types of compounds leading to 2 is well documented and has been accomplished with extremely high stereoselectivity. ${ }^{8,9}$

Using the present method, four contiguous asymmetric centres in $\mathbf{2}$ were constructed in a short, efficient and extremely stereocontrolled way.

Experimental

All m.p.s and b.p.s are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Hitachi R-22 (90 MHz), Hitachi R-250 (250 MHz), JEOL JNM-EX $270(270 \mathrm{MHz})$ or JEOL JNM-GX 500 $(500 \mathrm{MHz})$ spectrometers with CDCl_{3} as a solvent (tetra-

Table 1
Entry

[^0]methylsilane was used internal standard unless otherwise noted. J values are given in Hz . IR absorption spectra were recorded in CHCl_{3} on a JASCO HPIR-102 spectrophotometer. Low- and high-resolution mass spectra (MS) were obtained with a JEOL JMSD-300 instrument, with a direct inlet system at 70 eV . For column chromatography, Merck silica gel (70-230 mesh ASTM) was used. For preparative TLC, Merck TLC plates pre-coated with silica gel $60 \mathrm{~F}_{254}(0.5$ mm) were used.
Silyl ketene acetals 5a-c and silyl enol ethers 5f-h. The silky ketene acetals $5 \mathbf{a}-\mathrm{c}$ and silyl enol ethers $\mathbf{5 f}$ - h were prepared by the reported method. ${ }^{7}$

General Procedure for the Synthesis of Silyl Ketene Acetals 5d, e and 8b.-An ester (10 mmol) was added to a solution of lithium diisopropylamide [prepared from diisopropylamine (12 mmol) and butyllithium (12 mmol) in hexane] in dry tetrahydrofuran (THF) at $-78^{\circ} \mathrm{C}$. After 30 min , trimethylsilyl chloride (TMSCl, 20 mmol) was added slowly, and the temperature of the reaction mixture was allowed to warm to room temperature over 30 min . After being stirred for 1 h , the mixture was then concentrated under reduced pressure. Pentane was added, and the precipitated LiCl removed by filtration through a Celite pad. The filtrate was concentrated under reduced pressure. The residual oil was distilled to give the silyl ketene acetal as a mixture of stereoisomers (E and Z forms) and the α-silyl ester.

1-Methoxy-2-methylthio-1-(trimethylsiloxy)ethylene 5d. The title compound ($3.25 \mathrm{~g}, 68 \%$) was obtained from methyl methylthioacetate ($3.0 \mathrm{~g}, 0.025 \mathrm{~mol}$) and TMSCl $\left(4.8 \mathrm{~cm}^{3}, 0.038\right.$ mol) in dry THF as a colourless oil; b.p. $80-83^{\circ} \mathrm{C} / 11 \mathrm{mmHg}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1615$ and $1580 ; \delta_{\mathrm{H}} 0.12,0.25,0.33$ (total 9 H , each s, SiMe_{3}), 2.00, 2.13 (total 3 H , each s, SMe), 3.51, 3.57 and 4.14 (total 4 H , each s, $\mathrm{OMe}, \mathrm{CH}=$) (Found: C, 43.75; H, $8.5 \% ; \mathrm{M}^{+}, 192.0617 . \mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{SSi}$ requires $\mathrm{C}, 43.75 ; \mathrm{H}, 8.33 \%$; $M, 192.0638$).
2-Diethylamino-1-methoxy-1-(trimethylsiloxy)ethylene $5 \mathbf{5 e}$ The title compound ($2.40 \mathrm{~g}, 71 \%$) was obtained from methyl diethylaminoacetate ($3.0 \mathrm{~g}, 0.021 \mathrm{~mol}$) and TMSCl $\left(5.9 \mathrm{~cm}^{3}\right.$, 0.047 mol) in dry THF as a colourless oil; b.p. $70^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1685 ; \delta_{\mathrm{H}} 0.046,0.13,0.21,0.23$ (total 9 H , each $\mathrm{s}, \mathrm{SiMe}_{3}$), $0.99,1.01,1.04$ (total 6 H , each $\mathrm{t}, J 7.5$, $\mathrm{CH}_{2} \mathrm{Me} \times 2$), 2.52, 2.57, 2.63 (total 4 H , each $\mathrm{q}, J 7.5$, $\mathrm{MeCH}_{2} \times 2$), $3.30,3.50,3.57,3.70,3.88$ and 3.99 (total 4 H , each $\mathrm{s}, \mathrm{OMe}, \mathrm{CH}=$) (Found: $\mathrm{C}, 54.95 ; \mathrm{H}, 10.55 ; \mathrm{N}, 6.45 \% ; \mathrm{M}^{+}$, 217.1502. $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}$ requires $\mathrm{C}, 55.24 ; \mathrm{H}, 10.68 ; \mathrm{N}, 6.49 \%$; $\mathrm{M}, 217.1497$).
1-Methoxy-2-methyl-2-phenylthio-1-(trimethylsiloxy)ethyl-
ene 8 b . The title compound ($3.02 \mathrm{~g}, 75 \%$) was obtained from methyl 1 -methyl-1-phenylthioacetate ($3.0 \mathrm{~g}, 0.015 \mathrm{~mol}$) and TMSCl ($2.9 \mathrm{~cm}^{3}, 0.023 \mathrm{~mol}$) in dry THF as a colourless oil; b.p. $105^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1640$ and $1580 ; \delta_{\mathrm{H}} 0.25$, 0.31 (total 9 H , each s, SiMe ${ }_{3}$), $1.84(1.2 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.87(1.8 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.63(1.8 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.64(1.2 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $7.05-7.35$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (Found: C, $58.0 ; \mathrm{H}, 7.4 \% ; \mathrm{M}^{+}, 268.0965$. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SSi}$ requires $\mathrm{C}, 58.16 ; \mathrm{H}, 7.51 \% ; M, 268.0954$).

General Procedure for the Reaction of 4-Phenylsulfinyl-azetidin-2-one $\mathbf{4}$ with Silyl Ketene Acetals 5a-e and 8b or Silyl Enol Ethers $\mathbf{5 f}$-h.-To a stirred solution of 4-phenylsulfinyl-azetidin-2-one $4(0.10 \mathrm{mmol})$ and silyl ketene acetal or silyl enol ether $5 \mathrm{a}-\mathrm{h}, 8 \mathrm{~b}(0.2-0.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}\left(2 \mathrm{~cm}^{3}\right)$ was added $\mathrm{ZnI}_{\mathbf{2}}$ (0.01 mmol). After the mixture had been stirred for the period indicated in Table 1, it was quenched with saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ cm^{3}). The combined organic layer was washed with brine, dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by prepartive TLC on silica gel to give the 4 -substituted azetidin-2-one.
(3S,4R)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl $]-\mathrm{N}$-tert-butyldimethylsilyl-4-methoxycarbonylmethyl-2-one 6a. The title compound ($43.0 \mathrm{mg}, 73 \%$) was obtained from $4(50.0 \mathrm{mg}, 0.14$ mmol), 5 a ($106 \mathrm{mg}, 0.565 \mathrm{mmol}$) and $\mathrm{ZnI}_{2}(4.5 \mathrm{mg}, 0.0141$ mmol) in dry $\mathrm{CH}_{3} \mathrm{CN}$ as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1720 ; \delta_{\mathrm{H}} 0.0373,0.0593,0.196,0.216$ (total 12 H , each s , $\mathrm{SiMe}_{2} \times 2$), $0.865,0.934$ (total 18 H , each $\mathrm{s}, \mathrm{SiBu}^{t} \times 2$), 1.121 ($3 \mathrm{H}, \mathrm{d}, J 6.2,=\mathrm{CCH} M e$), $2.521\left(1 \mathrm{H}, \mathrm{dd}, J 8.8,14.3, \mathrm{CH} \mathrm{HCO}_{2}\right.$), $2.786\left(1 \mathrm{H}, \mathrm{dd}, J 4.6,14.3, \mathrm{CH} H \mathrm{CO}_{2}\right), 2.977(1 \mathrm{H}, \mathrm{dd}, J 2.7,4.2$, $3-\mathrm{H}), 3.669(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.962(1 \mathrm{H}$, ddd, $J 2.7,4.6,8.8,4-\mathrm{H})$ and $4.171(1 \mathrm{H}, \mathrm{qd}, J 6.2,4.2,>\mathrm{CH} \mathrm{Me})$ (Found: $\mathrm{M}^{+}, 415.2577$. $\mathrm{C}_{20} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires $M, 415.2574$).
(3S,4S)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl]-4-(1-meth-oxycarbonylethyl)azetidin-2-one 6b. The title compound (85.1 $\mathrm{mg}, 96 \%, 1 \alpha: 1 \beta=77: 23)$ was obtained from $4(100 \mathrm{mg}, 0.282$ mmol), 5b ($272 \mathrm{mg}, 1.70 \mathrm{mmol}$) and $\mathrm{ZnI}_{2}(9.00 \mathrm{mg}, 0.0281$ mmol) in dry $\mathrm{CH}_{3} \mathrm{CN}$ as a colourless powder, m.p. $128-133^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400,1760$ and $1725 ; \delta_{\mathrm{H}}$ $0.0603,0.0604$, (total 6 H , each s, SiMe_{2}), $0.859\left(2.07 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{1}\right)$, 0.867 (6.93 H , each s, SiBut), $1.135(0.69 \mathrm{H}, \mathrm{d}, J 6.2,>\mathrm{CH} M e$), $1.227(0.69 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{MeCHCO} 2), 1.229(4.62 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.M e \mathrm{CHC}=, \mathrm{MeCHCO}_{2}\right), 2.533\left(0.23 \mathrm{H}, \mathrm{dq}, J 9.8,7.0, \mathrm{CHCO}_{2}\right)$, $2.689\left(0.23 \mathrm{H}, \mathrm{dq}, J 6.0,7.0, \mathrm{CHCO}_{2}\right), 2.761(0.77 \mathrm{H}$, ddd, $J 1.2$, 2.0, 5.2, 4-H), 2.971 (0.23 H , ddd, $J 0.8,2.4,4.2,4-\mathrm{H}$), $3.680(0.77$ H , dd, $J 2.0,9.8,3-\mathrm{H}), 3.863(0.23 \mathrm{H}, \mathrm{dd}, J 2.2,6.0,3-\mathrm{H}), 3.688$ $(0.69 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.708(2.31 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.167(0.77 \mathrm{H}, \mathrm{dq}, J 7.0$, $5.2,>\mathrm{CHMe}), 4.183(0.23 \mathrm{H}, \mathrm{dq}, J 6.2,4.2,>\mathrm{CHMe}), 6.008$ $(0.23 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.107\left(0.77 \mathrm{H}\right.$, br s, NH) (Found: $\mathrm{M}^{+}-$ $\mathrm{Bu}^{t}, 258.1171 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{Si}$ requires m / z, 258.1161).
(3S,4S)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl]-4-(1-meth-oxy-1-methoxycarbonylmethyl)azetidin-2-one $\mathbf{6 c}$. The title compound $(41.6 \mathrm{mg}, 86 \%, 1 \alpha: 1 \beta=80: 20)$ was obtained from 4 ($50.0 \mathrm{mg}, 0.141 \mathrm{mmol}), 5 \mathrm{c}(71.4 \mathrm{mg}, 0.419 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(4.50$ $\mathrm{mg}, 0.0141 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}$ as colourless needles, m.p. $111-113{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane $) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420$ and $1755 ; \delta_{\mathrm{H}} 0.0589\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.0638\left(4.8 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.8596\left(1.8 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.8656\left(7.2 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.1011(0.6 \mathrm{H}$, $\mathrm{t}, J 6.1, \mathrm{MeCH}<), 1.1426(2.4 \mathrm{H}, \mathrm{d}, J 6.1, M e \mathrm{CH}<), 3.125$ ($0.2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 3.167 ($0.8 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 3.4319, 3.7845 (each 0.6 H , each s, each OMe), 3.462, 3.801 (each 2.4 H , each s, each OMe), 3.866 ($0.8 \mathrm{H}, \mathrm{d}, J 5.5,>\mathrm{CHOMe}$), 3.883 (0.2 H , dd, J $2.3,7.5,4-\mathrm{H}), 3.585(0.8 \mathrm{H}, \mathrm{dd}, J 2.4,5.5,4-\mathrm{H}), 4.231(1 \mathrm{H}, \mathrm{dq}$, $J 3.0,6.1, \geq \mathrm{CH} \mathrm{Me}), 5.782(0.8 \mathrm{H}$, br s, NH) and $5.938(0.2 \mathrm{H}$, br s, NH). Other signals cannot be assigned (Found: C, 54.3; $\mathrm{H}, 8.75 ; \mathrm{N}, 4.2 \% \mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Si}$ requires C, $54.35 ; \mathrm{H}, 8.82 ; \mathrm{N}$, 4.23%).
(3S,4S)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl]-4-(1-meth-oxycarbonyl-1-methylthiomethyl)azetidin-2-one 6d. The title compound ($81.0 \mathrm{mg}, 82 \%, 1 \alpha: 1 \beta=80: 20$) was obtained from 4 $(100 \mathrm{mg}, 0.282 \mathrm{mmol}), 5 \mathrm{~d}(163 \mathrm{mg}, 0.848 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(9.00$ $\mathrm{mg}, 0.0282 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}$ as colourless needles, m.p. $109-111{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1767$ and 1736 ; $\delta_{\mathrm{H}} 0.063,0.073\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.863\left(1.8 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\mathrm{t}}\right), 0.871(7.2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.152(0.6 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{MeCH}<), 1.263(2.4 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{MeCH}<$), 2.182 ($2.4 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 2.207 ($0.6 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 2.924 (0.8 $\mathrm{H}, \mathrm{dd}, J 2.0,2.3,3-\mathrm{H}), 3.055(0.2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.236(0.8 \mathrm{H}, \mathrm{d}, J 10$, >CHSMe), 3.298 ($0.2 \mathrm{H}, \mathrm{d}, J 7.5,>\mathrm{CHSMe}$), $3.764(2.4 \mathrm{H}, \mathrm{s}$, OMe), 3.786 ($0.6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.015(0.8 \mathrm{H}, \mathrm{dd}, J 2.3,10.0,4-\mathrm{H})$, $4.265(0.8 \mathrm{H}, \mathrm{dq}, J 2.0,6.8,=\mathrm{CHMe}), 5.969(0.8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.12(0.2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$. Other signals could not be assigned (Found: C, 52.05; H, 8.3; N, 3.95; S, 9.1. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SSi}$ requires C, 51.84; H, 8.41; N, 4.03; S, 9.22%).
(3S,4S)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl]-4-(1-di-ethylamino-1-methoxycarbonylmethyl)azetidin-2-one 6 e . The title compound ($31.2 \mathrm{mg}, 30 \%, 1 \alpha: 1 \beta=77: 23$) was obtained
from $4(100 \mathrm{mg}, 0.282 \mathrm{mmol}), 5 \mathrm{e}(185 \mathrm{mg}, 0.852 \mathrm{mmol})$ and ZnI_{2} $(9.00 \mathrm{mg}, 0.0282 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ as colourless crystals, m.p. $71-73^{\circ} \mathrm{C}$ (hexane); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420,1760$ and $1720 ;$ $\delta_{\mathrm{H}} 0.063\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.871\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.006(1.38 \mathrm{H}, \mathrm{t}$, $J 7.3, \mathrm{Me}_{2} \mathrm{CH}_{2} \times 2$), $1.035\left(4.62 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{Me}_{2} \mathrm{CH}_{2} \times 2\right), 1.139$ ($0.69 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{MeCH}<$), 1.196 ($2.31 \mathrm{H}, \mathrm{d}, J 6, M e \mathrm{CH}<$), 2.4 $2.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me} \times 2\right), 2.802(0.77 \mathrm{H}, \mathrm{dd}, J 1.8,2.0,3-\mathrm{H}), 2.97$ ($0.23 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $3.272\left(0.77 \mathrm{H}, \mathrm{d}, J 9.8,>\mathrm{CHNEt}_{2}\right.$), 3.33 (0.23 $\left.\mathrm{H}, \mathrm{d}, J 7.9,=\mathrm{CHNEt})_{2}\right), 3.693(0.69 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.720(2.31 \mathrm{H}, \mathrm{s}$, OMe), 3.928 ($0.77 \mathrm{H}, \mathrm{dd}, J 2.5,9.0,4-\mathrm{H}$), $4.274(0.77 \mathrm{H}, \mathrm{dq}, 1.8,6$, $=\mathrm{CH} \mathrm{Me}), 5.79(0.77 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $6.00(0.23 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ (Found: $\mathrm{M}^{+}, 372.2452 . \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SI}$ requires $M, 372.2444$).
(3S,4R)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl $]$-4-benzoyl-methylazetidin-2-one 6 f. The title compound ($43.9 \mathrm{mg}, 89 \%$) was obtained from $4(50.0 \mathrm{mg}, 0.141 \mathrm{mmol}), 5(70.0 \mathrm{mg}, 0.421$ mmol) and $\mathrm{ZnI}_{2}(4.50 \mathrm{mg}, 0.0141 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ as pale yellow crystals, m.p. $93-95^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420,1760$ and $1680 ; \delta_{\mathrm{H}} 0.0749,0.0813$ (total 6 H , each s, SiMe 2), $0.874\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.252(3 \mathrm{H}, \mathrm{d}, J 6.2$, MeCHC $<$), 2.887 (1 H , ddd, J 0.6, 2.4, $5.4,3-\mathrm{H}$), 3.167 (1 H , dd, $J 10.2,17.6, \mathrm{C} H \mathrm{HCO}), 3.472(1 \mathrm{H}, \mathrm{dd}, J 3.0,17.6, \mathrm{CH} H \mathrm{CO})$, 4.127 (1 H , ddd, $J 2.4,3.0,10.2,4-\mathrm{H}$), 4.226 ($1 \mathrm{H}, \mathrm{qd}, J 6.2,5.4$, $>\mathrm{CH} \mathrm{Me}), 6.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.4-8.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ (Found: $\mathrm{C}, 65.8 ; \mathrm{H}, 8.35 ; \mathrm{N}, 3.9 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3}$ Si requires C, 65.67; H, 8.41; $\mathrm{N}, 4.03 \%$).
(3S,4R)-4-(1-Benzoylethyl)-3-[(1R)-1-tert-butyldimethylsil-oxyethyl]azetidin-2-one 6 g . The title compound ($38.5 \mathrm{mg}, 75 \%$, $1 \alpha: 1 \beta=77: 23)$ was obtained from $4(50.0 \mathrm{mg}, 0.141 \mathrm{mmol}), 5 \mathrm{~g}$ ($70.0 \mathrm{mg}, 0.414 \mathrm{mmol}$) and $\mathrm{ZnI}_{2}(4.50 \mathrm{mg}, 0.0141 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ as a colourless powder, m.p. $102-105^{\circ} \mathrm{C}$ (hexane$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420,1755$ and $1675 ; \delta_{\mathrm{H}} 0.027$, 0.046 (total 1.38 H , each s, SiMe_{2}), $0.071,0.083$ (total 4.62 H , each s, SiMe $_{3}$), $0.842\left(2.07 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.871\left(6.93 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right)$, 1.14 ($1.38 \mathrm{H}, \mathrm{d}, J 6.5$, Me $\times 2$), 1.27 ($4.62 \mathrm{H}, \mathrm{d}, J 6.5$, Me $\times 2$), $2.85(0.77 \mathrm{H}, \mathrm{dd}, J 1.5,6.5,3-\mathrm{H}), 2.89(0.23 \mathrm{H}, \mathrm{dd}, J 2.0,6.5,3-\mathrm{H})$, $3.49(0.77 \mathrm{H}, \mathrm{qd}, J 6.5,10.0, \mathrm{CHCOPh}), 3.71(0.23 \mathrm{H}, \mathrm{qd}, J 6.5$, $5.0, \mathrm{CHCOPh}), 3.98(0.23 \mathrm{H}, \mathrm{dd}, J 2.0,5.0,4-\mathrm{H}), 3.99(0.77 \mathrm{H}$, dd, $J 1.5,10.0,4-\mathrm{H}), 4.17[0.23 \mathrm{H}$, quint, $>\mathrm{CH}(\mathrm{OSi})], 4.20[0.77$ H , quint, $=\mathrm{CH}(\mathrm{OSi})], 5.95(0.77 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 6.14(0.23 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), 7.47 and 7.90 (total $5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$) (Found: C, 66.3; H, 8.65; N, 3.75. $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 66.44 ; \mathrm{H}, 8.64 ; \mathrm{N}, 3.87 \%$).
(3S,4R)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl]-4-(2-oxocy-clohexylazetidin-2-one 6 h . The title compound $(43.0 \mathrm{mg}$, 93%, mixture of diastereoisomers, 39:61) was obtained from 4 $(50.0 \mathrm{mg}, 0.141 \mathrm{mmol}), 5 \mathrm{~h}(144 \mathrm{mg}, 0.848 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(4.50$ $\mathrm{mg}, 0.0141 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}$ as a yellow oil; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3425,1750$ and $1710 ; \delta_{\mathrm{H}} 0.050,0.061$ (total 6 H , each s, SiMe_{2}), $0.857,0.866$ (total 9 H , each s, SiBu ${ }^{t}$), 1.210 (1.83 $\mathrm{H}, \mathrm{d}, J 6.0, \mathrm{MeCH}<$), 1.225 ($1.17 \mathrm{H}, \mathrm{d}, J 6.0, M e \mathrm{CH}<$), 1.24 2.54 (total 9 H, m, cyclohexyl), 2.682 ($0.61 \mathrm{H}, \mathrm{dd}, J 1.8,6.0,3-\mathrm{H}$), $2.863(0.39 \mathrm{H}, \mathrm{dd}, J 2.4,6.0,3-\mathrm{H}), 3.600(0.61 \mathrm{H}, \mathrm{dd}, J 1.8,9.8$, 4-H), 4.077 ($0.39 \mathrm{H}, \mathrm{dd}, J 2.4,3.4,4-\mathrm{H}$), 4.148 (0.61 H , quint, J $6.0,>\mathrm{CHMe}), 4.184$ (0.39 H , quint, $J 6.0,>\mathrm{CH} \mathrm{Me}$), $5.821(0.39$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$) and $6.134\left(0.61 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, NH) (Found: M^{+}, 325.2059. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ requires $M, 325.2070$).
(3S,4S)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl)-4-(1-meth-oxycarbonyl-1-phenylthioethyl)azetidin-2-one 10. The title compound ($117 \mathrm{mg}, 95 \%$, mixture of diastereoisomers, $1: 1$) was obtained from $4(150 \mathrm{mg}, 0.425 \mathrm{mmol}), \mathbf{8 b}(342 \mathrm{mg}, 1.28 \mathrm{mmol})$ and ZnI_{2} ($13.5 \mathrm{mg}, 0.0425 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}$ as colourless crystals; m.p. 89.5-90.5 ${ }^{\circ} \mathrm{C}$ (light petroleum); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3400,1755 and $1720 ; \delta_{\mathrm{H}} 0.050,0.058,0.085$ (total 6 H , each s, SiMe_{2}), 0.86, 0.88 (total 9 H , each s, SiBut), 1.20 ($1.5 \mathrm{H}, \mathrm{d}, J 6.1$, $\mathrm{MeCH}<$), 1.32 ($1.5 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{MeCH}<$), $1.40,1.47$ (total 3 H , each s, MeS), 3.07 ($0.5 \mathrm{H}, \mathrm{dd}, J 1.8,2.4,3-\mathrm{H}), 3.19(0.5 \mathrm{H}, \mathrm{t}, J 1.8$, 3-H), 3.63, 3.70 (total 3 H , each s, MeO), 4.04 ($0.5 \mathrm{H}, \mathrm{d}, J 2.4$, $4-\mathrm{H}), 4.24(0.5 \mathrm{H}, \mathrm{d}, J 1.8,4-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{m}, ~=\mathrm{CHMe}), 5.80$, 6.01 (total 1 H , each br s, NH) and 7.29-7.56 (total $5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
(Found: C, 59.4; H, 8.0; N, 3.2; S, 7.78\%; \mathbf{M}^{+}, 423.1907 $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SSi}$ requires C, $59.54 ; \mathrm{H}, 7.85 ; \mathrm{N}, 3.41 ; \mathrm{S}, 7.57 \%$; $M, 423.1899$).
(3S,4R)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl $]-4-$ phenyl-thioazetidin-2-one 9.-A solution of trimethylsilylthiophenol ($129 \mathrm{mg}, 0.710 \mathrm{mmol}$), methyl acrylate ($61.1 \mathrm{mg}, 0.710 \mathrm{mmol}$) and $\mathrm{ZnI}_{2}(4.53 \mathrm{mg}, 0.0142 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h under nitrogen atmosphere. ${ }^{11} \mathrm{~A}$ solution of $4(50.0 \mathrm{mg}, 0.142 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(1 \mathrm{~cm}^{3}\right)$ was added to the mixture. After 1 h , the solvent was removed under reduced pressure to give a yellow oil, which was purified by preparative TLC eluting with $20 \% \mathrm{AcOEt}$ in hexane to give 9 ($38.0 \mathrm{mg}, 79 \%$) as colourless crystals; m.p. 119- $120^{\circ} \mathrm{C}$ (light petroleum) (lit., ${ }^{5}$ no data); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400$ and $1765 ; \delta_{\mathrm{H}}$ $0.051,0.066$ (total 6 H , each s, SiMe ${ }_{2}$), 0.87 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}$), 1.20 (3 $\mathrm{H}, \mathrm{d}, J 6.4, M e \mathrm{CH}<$), 3.03 (1 H , ddd, $J 0.7,2.2,3.5,3-\mathrm{H}$), 4.22 (1 $\mathrm{H}, \mathrm{qd}, J 6.4,3.5,>\mathrm{CH}$ Me), $5.07(1 \mathrm{H}, \mathrm{dd}, J 0.4,2.2,4-\mathrm{H}), 6.15(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$) and 7.34-7.50 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z $280\left(\mathrm{M}^{+}-57\right.$).
(3S,4S)-3-[(1R)-1-tert-Butyldimethylsiloxyethyl]-4-(1-meth-oxycarbonylethylene)azetidin-2-one 7.-A solution of m-chloroperbenzoic acid (m-CPBA; $80 \% 46.4 \mathrm{mg}, 0.216 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of $\mathbf{1 0}(24.1 \mathrm{mg}$, 0.057 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 10 min , the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a crude sulfoxide [25.3 mg, m.p. $122-124^{\circ} \mathrm{C}$ (hexane)] (Found: M^{+}, 439.1853. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SSi}$ requires $M, 439.1848$). The crude sulfoxide was dissolved in toluene ($10 \mathrm{~cm}^{3}$) and refluxed for 1 h . The solvent was removed under reduced pressure to give an oil, which was purified by preparative TLC on silica gel to give 7 $(10.8 \mathrm{mg} 68 \%)$ as colourless crystals: m.p. $130.5-131.5^{\circ} \mathrm{C}$ (hexane); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400,1760,1720$ and 1630; δ_{H} $0.071,0.083$ (total 6 H , each s, SiMe_{2}), 0.87 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}$), 1.26 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}<$), $3.07(1 \mathrm{H}, \mathrm{d}, J 3.6,3-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.26(1 \mathrm{H}, \mathrm{dq}, J 3.6,6.6,>\mathrm{CH} \mathrm{Me}), 4.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$, $5.898(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=), 5.903(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} H=)$ (Found: C, 57.3; H, 8.7; N, 4.5; M ${ }^{+}$, 313.1712. $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}$ requires $\mathrm{C}, 57.47 ; \mathrm{H}, 8.68 ; \mathrm{N}, 4.47 \% ; M, 313.1709$).

References

1 T. Kametani, Heterocycles, 1982, 17, 463; Recent Advances in the Chemistry of β-Lactam Antibiotics, eds. A. G. Brown and S. W. Roberts, Royal Society of Chemistry, London, 1984; D. H. Shih, F. Baker, L. Cama and B. G. Christensen, Heterocycles, 1984, 21, 29; W. Durckheimer, J. Blumbach, R. Lattrell and K. H. Scheunemann, Angew. Chem., Int. Ed. Engl., 1985, 24, 180; Y. Nagao, Kagaku, 1987, 42, 190; Y. Ito and S. Terashima, J. Synth. Org. Chem. Jpn., 1989, 47, 606.

2 A. Yoshida, T. Hayashi, N. Takeda, S. Oida and E. Ohki, Chem. Pharm. Bull., 1981, 29, 2899; A. Martel and J. P. Daris, USP., 1986, No. 4596 677; M. Endo, Synth. Commun., 1987, 17, 1029; F, Shirai and T. Nakai, J. Org. Chem., 1987, 52, 5491; T. Shibata and Y. Sugimura, J. Antibiot., 1989, 42, 374; Y. Ito, A. Sasaki, K. Tamoto, M. Sunagawa and S. Terashima, Tetrahedron, 1991, 47, 2801.

3 Y. Kita, O. Tamura, M. Shibata and T. Miki, J. Chem. Soc., Perkin Trans. 1, 1989, 1862; Y. Kita, N. Shibata, O. Tamura and T. Miki, Chem. Pharm. Bull., 1991, 39, 2225.
4 Y. Kita, N. Shibata, T. Miki, Y. Takemura and O. Tamura, J. Chem. Soc., Chem. Commun., 1990, 727; Chem. Pharm. Bull., 1992, 40, 12.
5 The sulfenylazetidin-2-ones were prepared alternatively by the following methods, see: M. Shibasaki, A. Nishida and S. Ikegami, J. Chem. Soc., Chem. Commun., 1982, 1324; M. Ishiguro, H. Iwata, T. Nakatsuka and M. Otsuka, Jpn. Kokai, 1986, 207373; M. Ishiguro, H. Iwata, T. Nakatsuka, R. Tanaka, Y. Maeda, T. Nishihara, T. Noguchi and T. Nishio, J. Antibiot., 1988, 41, 1685.

6 Y. Kita, H. Yasuda, O. Tamura, F. Itoh and Y. Tamura, Tetrahedron Lett., 1984, 25, 4681; Chem. Pharm. Bull., 1985, 33, 4235; Y. Kita, O. Tamura, T. Miki and Y. Tamura, Tetrahedron Lett., 1987, 28, 6479.

7 Y. Kita, J. Haruta, J. Segawa and Y. Tamura, Tetrahedron Lett., 1979, 4311 ; Y. Kita, J. Haruta, T. Fujii, J. Segawa and Y. Tamura, Synthesis, 1981, 451; A. Wissner, J. Org. Chem., 1979, 44, 4617; C. H. Heathcock, S. K. Davidsen, K. T. Hug and L. A. Flippin, J. Org. Chem., 1986, 51, 3027; H. O. House, L. J. Czuba, M. Gall and H. D. Olmstead, J. Org. Chem., 1969, 34, 2324.
8 C. U. Kim, B. Luh and R. A. Partyka, Tetrahedron Lett., 1987, 28, 507.
9 T. Iimori and M. Shibasaki, Tetrahedron Lett., 1986, 27, 2149; M. Sunagawa, H. Matsumura, T. Yano, A. Sasaki and S. Takata, EP, 1985, 180,189; L. M. Fuentes, I. Shinkai, A. King, R. Purick, R. A. Reamer, S. M. Schmitt, L. Cama and B. G. Christensen, J. Org.

Chem., 1987, 52, 2563; T. Ohta, H. Takaya, M. Kitamura, K. Nagai and R. Noyori, J. Org. Chem., 1987, 52, 3176; A. V. R. Rao, M. K. Gurjar, V. B. Khare, B. Ashok and M. N. Deshmukh, Tetrahedron Lett., 1990, 31, 271; T. Honda, T.-C. Wang and S.-D. Chu, Chem. Lett., 1990, 531; M. Kitamura, K. Nagai, Y. Hsiao and R. Noyori, Tetrahedron Lett., 1990, 31, 549.
10 D. H. Shih, J. A. Fayter, L. D. Cama, B. G. Christensen and J. Hirshfield, Tetrahedron Lett., 1985, 26, 583.

11 D. A. Evans, L. K. Truesdale, K. G. Grimm and S. L. Nesbitt, J. Am. Chem. Soc., 1977, 99, 5009.

[^0]: ${ }^{a}$ The reactions were carried out on $0.1-1 \mathrm{mmol}$ scale of 4 and $3-5$ equiv. of 5 or 8 in the presence of a catalytic amount (0.1 equiv.) of $\mathrm{Znl}{ }_{2}$; r.t. $=$ room temperature. ${ }^{b}$ All new compounds were characterised by microanalyses and IR and ${ }^{1} \mathrm{H}$ NMR spectral data and known compounds were identified by comparison with authentic samples. The stereochemistry of $6 \mathbf{b}$ e was assigned by the reported method ${ }^{10}$ by reduction of ester group followed by acetonide formation. ${ }^{c}$ Isolated yields (by column chromatography on silica gel) are given. ${ }^{d}$ The ratios were determined by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{e} N$-tert-Butyldimethylsilylated compound $6 a$ was obtained, although N-trimethylsilylated compounds were readily converted to N - H compounds $\mathbf{6 b - h}, 9$ and 10 by usual work-up. ${ }^{f}$ An $85: 15$ mixture of E and Z isomers was used. ${ }^{g}$ A mixture of O-silylated ketene acetals (E and Z isomers) containing a small amount of C-silylated ester was used in the reaction without separation.

